

Date Planned ://			Daily	Daily Tutorial Sheet - 6			Expected Duration : 90 Min			
Actual Date of Attempt : / /				JEE A	dvanced	l (Archive)	Ex	:		
76.	Using	VSEPR theory	, draw the sh	ape of PCl ₅	and BrF ₅				(2003)	
77.	Numb	er of lone pair	(s) in XeOF ₄	is(are) :					(2004)	
	(A)	0	(B) 1	-	(C)	2	(D)	3		
78.		ne basis of gro bond length o			nfiguratio	n, arrange th	e following	g molecules i	in increasing (2004)	
79.	Draw	the shape of	XeF ₄ and OS	F ₄ according	g to VSEF	PR theory. She	ow the lon	e pair of elec	trons on the	
	centra	al atom.							(2004)	
80.	Accor	ding to MO Th	eory,						(2004)	
	(A)	O_2^+ is param	nagnetic and	bond order g	greater th	an O ₂				
	(B)	O ₂ is paran	nagnetic and	bond order le	ess than	O_2				
	(C)	O_2^+ is diama	agnetic and bo	ond order is	less than	O_2				
	(D)	O_2^+ is diama	agnetic and bo	ond order is	more tha	n O_2				
81.	Predic	et whether the	following mol	ecules are is	ostructur	al or not. Jus	tify your aı	nswer.	(2005)	
	(i)	NMe_3	(ii)	$N(SiMe_3)_3$					\odot	
82 .	Which	species has t	he maximum	number of le	one pair o	of electrons on	the centra	ıl atom ?	(2005)	
	(A)	${\rm CaCO}_3$	(B)	XeF ₄	(C)	SF_4	(D)	KI_3		
83.	Amon	g the following	g, the paramag	gnetic compo	ound is :				(2007)	
	(A)	$\mathrm{Na_2O_2}$	(B) (O_3	(C)	N_2O	(D)	KO_2		
84.	The s	pecies having l	oond order dif	ferent from t	that in Co	O is:			(2007)	
	(A)	NO^-	(B)	NO ⁺	(C)	CN -	(D)	${ m N}_2$		
85 .	Match	each of the d	iatomic molec	ules in Colu	mn I with	its property/	properties	in Column II.	(2009)	

match each of the diatomic molecules in Column 1 with its property, properties in Column it.								
	Column I	Column II						
(A)	B_2	(p) Paramagnetic						
(B)	N_2	(p)	Undergoes oxidation					
(C)	O_2^-	(r)	Undergoes reduction					
(D)	O ₂	(s)	Bond order ≥ 2					
		(t)	Mixing of 's' and 'p' orbitals					

86.	Assuming that Hund's rule is violated, the box	ond order and magnetic nature of the diatomic molecul	e
	$\mathbf{C_2}$ is:	(2010))
	(4)	(-)	

119

87.	Based	on VSE	EPR the	ory, the r	number of 9	90 degree	F -	Br – F	angles ir	BrF ₅ is	3	(2010)
88.	The sp	oecies h	aving py	yramidal	shape is:							(2010)
	(A)	SO_3		(B)	BrF_3	(C)	SiO	2– 3	(D)	OSF_2	
*89.	Which one of the following molecules is expected to exhibit diamagnetic behavior?											(2013)
	(A)	C_2		(B)	${\rm N_2}$	(0	C)	${\rm O}_2$		(D)	S_2	
90.	Assun	Assuming 2s-2p mixing is NOT operative, the paramagnetic species among the following is:										
	(A)	Be_2		(B)	B_2	(0	C)	$\mathbf{C_2}$		(D)	N_2	$lackbox{}$
*91.	Hydrogen bonding plays a central role in which of the following phenomena?											(2014)
	(A)	Ice floats in water										
	(B)	Higher Lewis basicity of primary amines than tertiary amines in aqueous solutions								ons		
		(C) Formic acid is more acidic than acetic acid(D) Dimerisation of acetic acid in benzene										
	(D)	Dime	risation	of acetic	acid in be	nzene						
92.	Match the orbital overlap figure in List I with the description given in List II and select the using the code given below the lists.											
	using	the cod			e lists.				0-1	**		(2014)
			Col	lumn I					Colum	ın II		
	(p)					(1)	ı	p – d π				
	(g)	8 %				(2)		d-d σ				
	(r)	8 %				(3)		p – d π				
	(s)					(4)		d-d σ				
	Code	:										
		p	q	r	s			p	q	r	s	
	(A)	2	1	3	4	(1	3)	4	3	1	2	
	(C)	2	3	1	4	(1))	4	1	3	2	
93.	Among the triatomic molecules/ions, $BeCl_2$, N_3^- , N_2O , NO_2^+ , O_3 , SCl_2 , ICl_2^- , I_3^- and $XeFactorial XeFactorial $										XeF ₂ , the total	
	number of linear molecule(s)/ ion(s) where the hybridization of the central atom decontribution from the d-orbital(s) is									n does not have		
	[Atom:	ic numb	per: S =	16, Cl =	17, I = 53 a	and $Xe = 5$	4]					(2015)
*94.	The co	mpoun	d(s) with	h two lon	e pairs of e	electrons o	n tł	ie centr	al atom	is(are) :		(2016)
	(A)	BrF_5		(B)	ClF_3	(C)	XeF	4	(D)	SF_4	

*95. According to Molecular Orbital Theory,

(2016)

- (A) C_2^{2-} is expected to be diamagnetic
- **(B)** O_2^{2+} is expected to have a longer bond length than O_2
- (C) N_2^+ and N_2^- have the same bond order
- (D) He_2^+ has the same energy as two isolated He atoms
- **96.** The sum of the number of lone pair of electrons on each central atom in the following species is

$$[\text{TeBr}_6]^{2-}$$
, $[\text{BrF}_2]^{2+}$ SNF₃, and $[\text{XeF}_3]^-$ (2017)

(Atomic number : N = 7, F = 9, S = 16, Br = 35, Te = 52, Xe = 54)

97. Among H_2 , He_2^+ , Li_2 , Be_2 , B_2 , C_2 , N_2 , O_2^- and F_2 , the number of diamagnetic species is ______.

(Atomic number:
$$H = 1$$
, $He = 2$, $Li = 3$, $Be = 4$, $B = 5$, $C = 6$, $N = 7$, $O = 8$, $F = 9$) (2017)

98. Each of the following options contains a set of four molecules. Identify the option(s) where all four molecules possess permanent dipole moment at room temperature. **(2019)**

121

(A) BF_3, O_3, SF_6, XeF_6

- **(B)** $BeCl_2, CO_2, BCl_3, CHCl_3$
- $(\mathbf{C}) \qquad \text{NO}_2, \text{NH}_3, \text{POCl}_3, \text{CH}_3 \text{Cl}$
- (D) $SO_2, C_6H_5Cl, H_2Se, BrF_5$